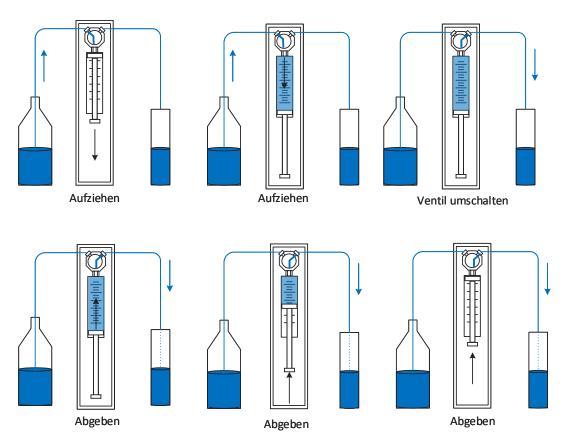
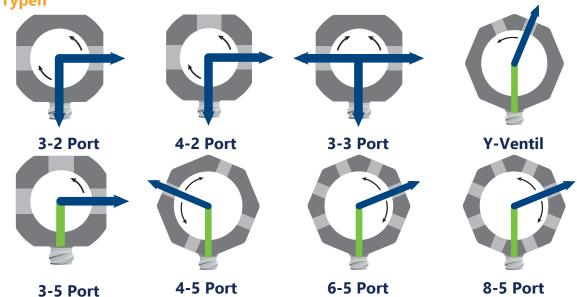
Dosiermodul PSD/6

exaktes Dosieren µl bis ml

Das PSD/6 ist ein hochgenaues Spritzendosiersystem für Labor, Verfahrenstechnik, F&E als auch für den industriellen Einsatz zur Dosierung im Bereich µl bis ml. Aufgrund der verwendeten Materialien kann eine Vielzahl an unterschiedlichen Medien (wässrig, organisch, aggressiv, hochviskos, gasförmig) metallfrei gefördert werden. Somit erstreckt sich der Anwendungsbereich des PSD/6 von Chemie, Pharma, Biotechnologie, Medizintechnik, Lebensmittelindustrie bis hin zu produzierenden Industriezweigen.



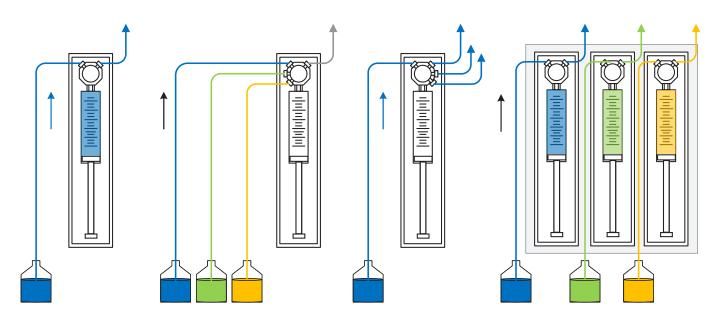
Funktionsweise


PSD Spritzendosierer bestehen aus einem Spritzenantrieb kombiniert mit einem Ventilantrieb. Über das aktive Ventil wird gesteuert, aus welchem Port Medium gezogen bzw. wohin gefördert werden soll – das System ist somit selbstansaugend. Die 6cm Hublänge des Spritzenantriebes lassen sich über einen Schrittmotor in 48.000 Schritte auflösen und in einem Zeitbereich von 2s – 100min verfahren. Je nach montierter Spritze ergeben sich hieraus Dosiermengen (in einem Hub) von 1µl bis 50ml. Der Ventilantrieb lässt den Einsatz unterschiedlichster Ventile (Fluidpfad & Material) zu. Spritzen und Ventile lassen sich in kürzester Zeit montieren und demontieren und ermöglichen somit einen einfachen und schnellen Wechsel zwischen unterschiedlichsten Konfigurationen.

Da es sich bei dem PSD Spritzendosierer um ein Direktverdränger System handelt, können sowohl hochviskose, leichtflüchtige als auch Medien mit unterschiedlichen Dichten sehr präzise dosiert werden, ohne dass das System zuvor kalibriert werden muss.

Die Systeme können je nach Ausführung über RS232, mit Analog- oder TTL Signalen angesteuert und überwacht werden. Für komplexe Aufgabenstellungen oder Mehrkanalanwendungen können bis zu 15 Systeme miteinander gekoppelt werden bzw. sind schon als fertige 2-, 3- und 6-fach Dosierer erhältlich.

Funktionsweise - Fluidpfade

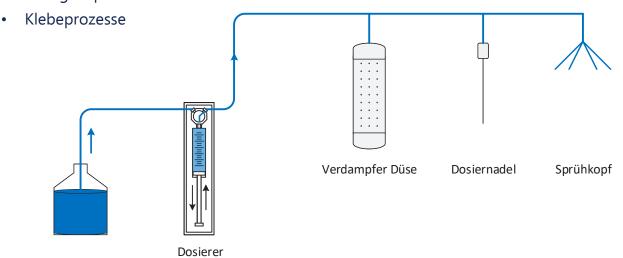


Ventil-Eigenschaften

- Druckkompatibilität bis zu 100 psi
- Chemisch inerte Fluidwege
- Anschlüsse mit flachem Boden und 1/4"-28-Gewinde

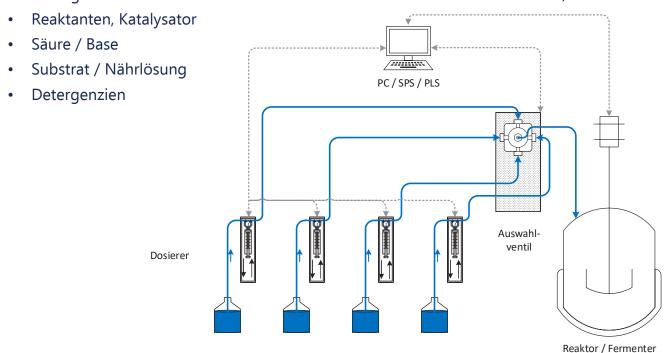
Ein- & Mehrfach-Dosierer

Spezifikationen


Genauigkeit	±1 % bei 100 % Vollhub
Präzision	≤ 0,05 % bei 100 % Vollhub
Fluidpfad	PTFE, PCTFE, Borosilikatglas, Keramik, PFA (je nach Ausführung)
Lineare Antriebsleistung	9,98 kgf (kilogram-force)
Auflösung	wählbar 6.000 Schritte (Standard) / 48.000 Schritte (hoch) bei 6 cm Vollhub
Antriebsart Spritze	Schrittmotorgetriebener Spindelantrieb mit optischem Encoder
Spritzengeschwindigkeit	2 sec - 100 min pro Vollhub (hängt stark von Spritzengröße, Rückdruck und Kraftaufwand ab - daher nur theoretische Werte)
Spritzenvolumen	10 μl - 50 ml (weitere Informationen siehe Zubehör)
Antriebsart Ventil	Schrittmotor mit optischem Encoder
Ventilschaltzeit	250 ms für 120° Rotation
Schnittstellen	RS232, RS485 oder CAN (abhängig vom Gehäusetyp)
Betriebstemperatur	15°C - 40°C

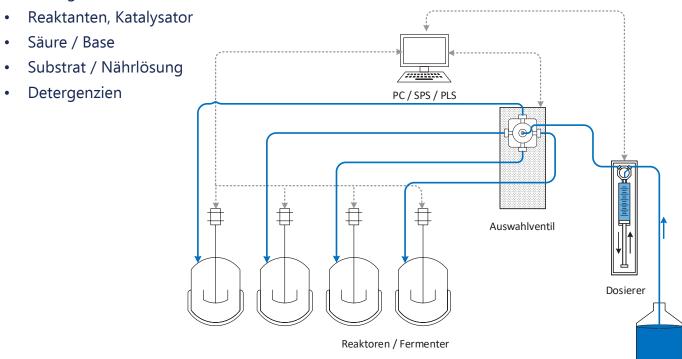
Anwendungsbeispiele

Flüssigkeiten Auftragen / Sprühen / Verdampfen

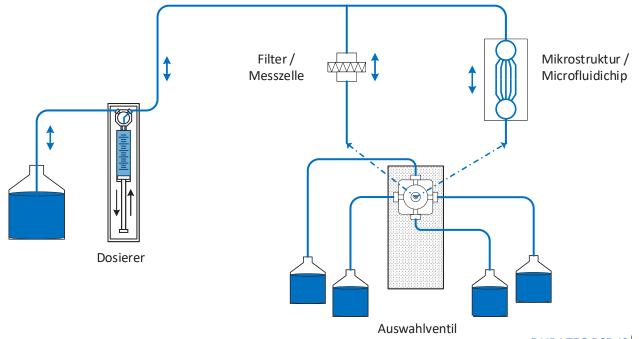

Nutzung des PSD Moduls zur Förderung von Flüssigkeiten an unterschiedlichste Abgabesysteme, um Flüssigkeiten abzufüllen, aufzutragen, zu sprühen oder auch zu verdampfen:

- · Wirkstoffaufbringung Medizintechnik und Medizindiagnostik
- Prüfgasherstellung über Verdampfersysteme
- Dosierungen & Formulierung
- Reinigunsprozesse Halbleiterindustrie

Reaktionstechnik / Fermentation – Multi-Medien Dosiersystem


Dosierung unterschiedlichster Medien über ein Auswahlventil in einen Reaktor / Fermenter.

Anwendungsbeispiele


Reaktionstechnik / Fermentation – Multi-Reaktor Dosiersystem

Dosierung eines Mediums über ein Verteilerventil in unterschiedliche Reaktoren / Fermenter.

Mikrofluidik

Beidseitiges Pumpen/Dosieren unterschiedlicher Medien mit kleinen Flüssen /Mengen in und durch Mikrostrukturen, Microfluidchips, Messzellen, Filtrationsysteme.

Dosiermodule

Artikel-Nr.	Beschreibung
H63133-01	PSD/6 SYRINGE PUMP ROHS, 24 VDC (ohne Gehäuse, Ventil, Spritze und elektrische Anschlüsse)
H63133-01-M1	PSD/6 Spritzenantrieb mit Gehäuse, 24 VDC (ohne Ventil, Spritze und elektrische Anschlüsse) (Gehäuse: B: 60 mm/ H: 240 mm / T: 110 mm)
792134-G2	Gehäuse, Netzteil (100-240 VAC), Verdrahtung, RS-232-Port, Platz für 2x PSD/6-Module im Einschubrahmen (B: 165 mm / H: 320 mm / T: 316 mm) ohne PSD/6, Ventile und Spritzen
792134-G3	Gehäuse, Netzteil (100-240 VAC), Verdrahtung, RS-232-Port, Platz für 3x PSD/6-Module im Einschubrahmen (B: 236 mm / H: 320 mm / T: 316 mm) ohne PSD/6, Ventile und Spritzen
792134-G6	Gehäuse, Netzteil (V100-240 VAC) , Verdrahtung,RS-232-Port, Platz für 6x PSD/6-Module (B: 471 mm /H: 291 mm / T: 271 mm) ohne PSD/6, Ventile und Spritzen
792134-01	Adapterkabel für PSD/4, PSD/6 an 24V / RS232 (für H63133-01 & H63133-01-M1)
792134-ER	Einschubrahmen für PSD/6 inkl. Montage
792134-AP	Abdeckplatte für Leerposition in PSD/6-x

H63133-01-M1

792134-G2

792134-G3

792134-G6

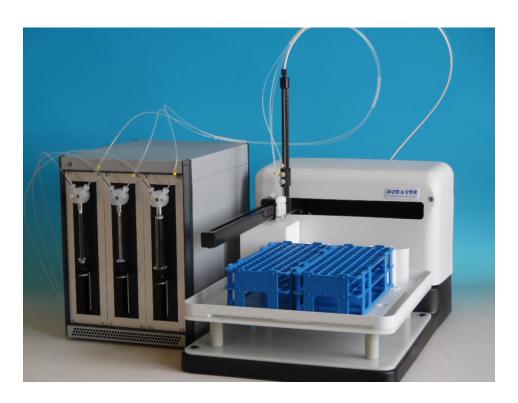
Ventile & Spritzen

Artikel-Nr.	Beschreibung
H7427-01	Ventil, HV 3-2, Y, PSD/4/6 PTFE Gehäuse, Fluidpfad PTFE/PCTFE, 1,5 mm Bohrung, Für Spritzen größer 10 ml wird zusätzlich Adapter 209651 benötigt
H9234-01	Keramikventil HVC 4-2, PSD/4/6 Aluminium Gehäuse, Fluidpfad Aluminiumoxid/ PTFE/PCTFE, 1,5 mm Bohrung (nicht kompatibel mit 25 ml & 50 ml Spritzen)
H7991-01	Keramikventil HVC 3-5, PSD/4/6 Aluminium Gehäuse, Fluidpfad Aluminiumoxid/ PTFE/PCTFE, 1,5 mm Bohrung (nicht kompatibel mit 25 ml & 50 ml Spritzen)
H8063-01	Keramikventil HVC 3-3, T, PSD/4/6 Aluminium Gehäuse, Fluidpfad Aluminiumoxid/ PTFE/PCTFE, 1,5 mm Bohrung (nicht kompatibel mit 25 ml & 50 ml Spritzen)
H7992-01	Keramikventil HVCX 4-5, PSD/4/6 Aluminium Gehäuse, Fluidpfad Aluminiumoxid/ PTFE/PCTFE, 1,9 mm Bohrung (nicht kompatibel mit 10 ml - 50 ml Spritzen)
H9998-01	Keramikventil HVCX 6-5, PSD/4/6 Aluminium Gehäuse, Fluidpfad Aluminiumoxid/ PTFE/PCTFE, 1,3 mm Bohrung
H59943-01	Keramikventil HVCX 8-5, PSD/4/6 Aluminium Gehäuse, Fluidpfad Aluminiumoxid/ PTFE/PCTFE, 1,6 mm Bohrung
H7993-01	Keramikventil HVCX 8-5, PSD/4/6 Aluminium Gehäuse, Fluidpfad Aluminiumoxid/ PTFE/PCTFE, 1,3 mm Bohrung

Hinweis: $\frac{1}{4}$ -28 UNF Anschlüsse für Fittinge und TTL (LUER) für die Spritze, Druck 0 bis 6,9 bar

H7427-01 H9234-01 H7992-01 H9998-01 H7993-01 H7991-01

Ventile & Spritzen


Artikel-Nr.	Beschreibung	
H80222	25 µl Spritze	TLLX
H80922	50 µl Spritze	TLLX
H81022	100 μl Spritze	TLLX
H81122	250 µl Spritze	TLLX
H81222	500 µl Spritze	TLLX
H81320	1 ml Spritze	TLL
H81420	2,5 ml Spritze	TLL
H81520	5 ml Spritze	TLL
H81620	10 ml Spritze	TLL
H82521	25 ml Spritze	TLL
H85021	50 ml Spritze	TLL

Sonderlösungen

3-fach Dosierer für Herstellung von Küvettentest-Reagenzgemisch

Anlage zur Eigenherstellung Küvettentest-Reagenzgemisch für die Bestimmung des chemischen Sauerstoffbedarfs ST-CSB in Wasser und Abwasser. Hierzu werden drei Testsubstanzen gemäß einem programmierbaren Abfüllschema in unterschiedlichen Mengen in spezielle Reaktions-/ Messgefäße dosiert.

